A lipid bound actin meshwork organizes liquid phase separation in model membranes

نویسندگان

  • Alf Honigmann
  • Sina Sadeghi
  • Jan Keller
  • Stefan W Hell
  • Christian Eggeling
  • Richard Vink
چکیده

The eukaryotic cell membrane is connected to a dense actin rich cortex. We present FCS and STED experiments showing that dense membrane bound actin networks have severe influence on lipid phase separation. A minimal actin cortex was bound to a supported lipid bilayer via biotinylated lipid streptavidin complexes (pinning sites). In general, actin binding to ternary membranes prevented macroscopic liquid-ordered and liquid-disordered domain formation, even at low temperature. Instead, depending on the type of pinning lipid, an actin correlated multi-domain pattern was observed. FCS measurements revealed hindered diffusion of lipids in the presence of an actin network. To explain our experimental findings, a new simulation model is proposed, in which the membrane composition, the membrane curvature, and the actin pinning sites are all coupled. Our results reveal a mechanism how cells may prevent macroscopic demixing of their membrane components, while at the same time regulate the local membrane composition. DOI: http://dx.doi.org/10.7554/eLife.01671.001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actin polymerization serves as a membrane domain switch in model lipid bilayers.

The ability of cells to mount localized responses to external or internal stimuli is critically dependent on organization of lipids and proteins in the plasma membrane. Involvement of the actin cytoskeleton in membrane organization has been documented, but an active role for actin networks that directly links internal organization of the cytoskeleton with membrane organization has not yet been ...

متن کامل

Nano composite PEBAX®/PEG membranes: Effect of MWNT filler on CO2/CH4 separation

The performances of two-phase polymer-liquid PEBAX®/polyethylene glycol (PEG) and three-phase polymer-liquid-solid PEBAX®/PEG/MWNT thin film composite membranes for CO2 and CH4 permeation were studied. The effect of temperature and MWNT/PEBAX® ratio on single gas (CO2 and CH4) permeability was investigated. The permeat...

متن کامل

Biomembrane liquid-liquid phase separation and detergent resistance: a relationship strengthened.

Since evidence first appeared for 'detergent-resistant membranes' in the early to mid-1990s, cell biologists from a wide spectrum of biological sciences have been intrigued by the functional relevance of this indication of membrane heterogeneity, commonly referred to as 'lipid rafts'. Model membrane studies revealed that these lipid rafts are related to the more ordered liquid phase that forms ...

متن کامل

Nano composite PEBAX®/PEG membranes: Effect of MWNT filler on CO2/CH4 separation

The performances of two-phase polymer-liquid PEBAX®/polyethylene glycol (PEG) and three-phase polymer-liquid-solid PEBAX®/PEG/MWNT thin film composite membranes for CO2 and CH4 permeation were studied. The effect of temperature and MWNT/PEBAX® ratio on single gas (CO2 and CH4) permeability was investigated. The permeat...

متن کامل

Preparation and characterization of polyethylene/ glass fiber composite membrane prepared via thermally induced phase separation method

Grinded glass fiber (GGF) embedded high density polyethylene (HDPE) membranes were prepared via thermally induced phase separation method. FESEM images showed that all the membranes had leafy structure, indicating a solid-liquid mechanism during phase separation. The results of EDX and TGA analyses confirmed that the fibers were dispersed in the HDPE matrix uniformly. Normalized water flux of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014